Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.651
Filtrar
1.
J Integr Plant Biol ; 66(4): 645-659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450982

RESUMO

ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.


Assuntos
Cromossomos , Elementos de DNA Transponíveis , Humanos , Elementos de DNA Transponíveis/genética , Mutagênese Insercional/genética , Sequência de Bases , Mutação , Zea mays/genética
2.
Cell Rep ; 43(1): 113517, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38142397

RESUMO

Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.


Assuntos
Elementos de DNA Transponíveis , Sequenciamento de Nucleotídeos em Larga Escala , Elementos de DNA Transponíveis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Clonagem Molecular , Biblioteca Gênica , Bactérias/genética , Mutagênese Insercional/genética
3.
Cell Rep ; 43(1): 113519, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38142398

RESUMO

The critical role of the intestinal microbiota in human health and disease is well recognized. Nevertheless, there are still large gaps in our understanding of the functions and mechanisms encoded in the genomes of most members of the gut microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help us address this gap. Recent advances in barcoded transposon mutagenesis have dramatically lowered the cost of mutant fitness determination in hundreds of in vitro and in vivo experimental conditions. In an accompanying review, we discuss recent advances and caveats for the construction of pooled and arrayed barcoded transposon mutant libraries in human gut commensals. In this review, we discuss how these libraries can be used across a wide range of applications, the technical aspects involved, and expectations for such screens.


Assuntos
Elementos de DNA Transponíveis , Humanos , Mutagênese Insercional/genética , Elementos de DNA Transponíveis/genética , Biblioteca Gênica
4.
Int J Biol Sci ; 19(6): 1764-1777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063417

RESUMO

Sleeping Beauty (SB) insertional mutagenesis has been widely used for genome-wide functional screening in mouse models of human cancers, however, intertumor heterogeneity can be a major obstacle in identifying common insertion sites (CISs). Although previous algorithms have been successful in defining some CISs, they also miss CISs in certain situations. A major common characteristic of these previous methods is that they do not take tumor heterogeneity into account. However, intertumoral heterogeneity directly influences the sequence read number for different tumor samples and then affects CIS identification. To precisely detect and define cancer driver genes, we developed SB Digestor, a computational algorithm that overcomes biological heterogeneity to identify more potential driver genes. Specifically, we define the relationship between the sequenced read number and putative gene number to deduce the depth cutoff for each tumor, which can reduce tumor complexity and precisely reflect intertumoral heterogeneity. Using this new tool, we re-analyzed our previously published SB-based screening dataset and identified many additional potent drivers involved in Brca1-related tumorigenesis, including Arhgap42, Tcf12, and Fgfr2. SB Digestor not only greatly enhances our ability to identify and prioritize cancer drivers from SB tumors but also substantially deepens our understanding of the intrinsic genetic basis of cancer.


Assuntos
Elementos de DNA Transponíveis , Neoplasias , Animais , Camundongos , Humanos , Elementos de DNA Transponíveis/genética , Neoplasias/genética , Neoplasias/patologia , Mutagênese Insercional/genética , Oncogenes , Modelos Animais de Doenças , Transposases/genética
5.
Mol Syst Biol ; 19(6): e11398, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-36970845

RESUMO

In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self-propagating transposon platform for continuous genome-wide mutagenesis and the dynamic rewiring of gene networks in bacteria. We first use the platform to study the impact of transposon functionalization on the evolution of parallel Escherichia coli populations toward diverse carbon source utilization and antibiotic resistance phenotypes. We then develop a modular, combinatorial assembly pipeline for the functionalization of transposons with synthetic or endogenous gene regulatory elements (e.g., inducible promoters) as well as DNA barcodes. We compare parallel evolutions across alternating carbon sources and demonstrate the emergence of inducible, multigenic phenotypes and the ease with which barcoded transposons can be tracked longitudinally to identify the causative rewiring of gene networks. This work establishes a synthetic transposon platform that can be used to optimize strains for industrial and therapeutic applications, for example, by rewiring gene networks to improve growth on diverse feedstocks, as well as help address fundamental questions about the dynamic processes that have sculpted extant gene networks.


Assuntos
Elementos de DNA Transponíveis , Genômica , Mutagênese Insercional/genética , Elementos de DNA Transponíveis/genética , Fenótipo , Redes Reguladoras de Genes
6.
J Virol ; 97(3): e0003823, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779761

RESUMO

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Assuntos
Vírus da Bronquite Infecciosa , Mamastrovirus , Mutagênese Insercional , Animais , Humanos , Regiões 3' não Traduzidas/genética , Galinhas/virologia , Vírus da Bronquite Infecciosa/genética , Mamastrovirus/genética , Mutagênese Insercional/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Replicação Viral/genética , Estabilidade de RNA/genética , Deleção de Sequência/genética
7.
Mol Oncol ; 17(2): 230-237, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269676

RESUMO

Epidermal growth factor receptor (EGFR) exon 20 insertion mutations (ex20ins) account for ≤ 12% of all EGFR-mutant nonsmall cell lung cancers. We analysed real-world datasets to determine the frequency of ex20ins variants, and the ability of polymerase chain reaction (PCR) and next-generation sequencing (NGS) to identify them. Three real-world United States NGS databases were used: GENIE, FoundationInsights, and GuardantINFORM. Mutation profiles consistent with in-frame EGFR ex20ins were summarized. GENIE, FoundationInsights, and GuardantINFORM datasets identified 180, 627, and 627 patients with EGFR ex20ins respectively. The most frequent insertion region of exon 20 was the near loop (~ 70%), followed by the far loop (~ 30%) and the helical (~ 3-6%) regions. GENIE, FoundationInsights, and GuardantINFORM datasets identified 41, 102, and 96 unique variants respectively. An analysis of variants projected that ~ 50% of EGFR ex20ins identified by NGS would have been missed by PCR-based assays. Given the breadth of EGFR ex20ins identified in the real-world US datasets, the ability of PCR to identify these mutations is limited. NGS platforms are more appropriate to identify patients likely to benefit from EGFR ex20ins-targeted therapies.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutagênese Insercional/genética , Receptores ErbB/genética , Mutação/genética , Éxons/genética , Genômica , Inibidores de Proteínas Quinases
8.
JCO Precis Oncol ; 6: e2200278, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36240473

RESUMO

PURPOSE: HER2-altered non-small-cell lung cancer (NSCLC) represents a diverse subgroup, including mutations, amplifications, and overexpression. However, HER2 exon 20 insertion mutations are emerging as a distinct molecular subtype with expanding therapeutic options. We describe the molecular epidemiology and genomic features of HER2-altered NSCLC in an Asian tertiary cancer center. METHODS: We identified patients with HER2-mutated NSCLC in our institutional database, collating clinicopathological features and treatment outcomes. The genomic landscape of human epidermal growth factor receptor 2 (HER2)-mutated NSCLC was further evaluated using whole-exome sequencing (WES) data from combined local and publicly available data sets. HER2 amplification and overexpression as selection biomarkers in NSCLC were further interrogated using HER2 immunohistochemistry and correlations with WES and RNA sequencing data. RESULTS: Among 1,252 patients with consecutive lung adenocarcinoma undergoing routine next-generation sequencing, the prevalence of HER2 mutations was 3.1%-exon 20 insertion mutations comprised 2.7%. We examined the clinicopathological features in 55 patients with HER2-mutated NSCLC comprising 40 exon 20 insertion and 15 nonexon 20 insertion mutations. The most common exon 20 insertion mutation was HER2Y772_A775dup in 30 (75%), followed by HER2G776delinsVC in five patients (13%). There were limited responses to HER2-directed therapies apart from trastuzumab-deruxtecan, and no responses were seen with immunotherapy monotherapy. Evaluating the genomics features of HER2 exon 20 insertion mutations using WES data revealed low tumor mutational burden (TMB), low incidence of cancer driver comutations, and a predominance of aging mutational signature-similar to EGFR-mutated tumors. In contrast, uncommon (or nonexon 20 insertion) HER2-mutated tumors resembled EGFR wild-type tumors with higher TMB, higher frequency of cancer driver comutations, and greater presence of smoking and APOBEC mutational signature. Finally, in evaluating HER2 immunohistochemistry in all lung adenocarcinoma, there was significant discordance comparing different scoring systems and poor correlation with HER2 RNA expression and HER2 amplification. CONCLUSION: The incidence of HER2 mutations is 3.1% in East Asian nonsquamous NSCLC. HER2 exon 20 insertion-mutated tumors appear genomically distinct from uncommon (nonexon 20 insertion) HER2 mutations, the latter demonstrating higher TMB, co-occurring drivers, and predominant nonaging mutational signature. The therapeutic implications of the genomic and clinical features of HER2-mutated NSCLC warrant further investigation.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Éxons/genética , Genômica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Mutagênese Insercional/genética , RNA/uso terapêutico , Receptor ErbB-2/genética , Trastuzumab/genética
10.
J Mol Diagn ; 24(11): 1181-1188, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963523

RESUMO

Amivantamab, an epidermal growth factor receptor (EGFR)-c-Met bispecific antibody, targets activating/resistance EGFR mutations and MET mutations/amplifications. In the ongoing CHRYSALIS study (ClinicalTrials.gov Identifier: NCT02609776), amivantamab demonstrated antitumor activity in patients with non-small cell lung cancer harboring EGFR exon 20 insertion mutations (ex20ins) that progressed on or after platinum-based chemotherapy, a population in which amivantamab use has been approved by the US Food and Drug Administration. This bridging study clinically validated two novel candidate companion diagnostics (CDx) for use in detecting EGFR ex20ins in plasma and tumor tissue, Guardant360 CDx and Oncomine Dx Target Test (ODxT), respectively. From the 81 patients in the CHRYSALIS efficacy population, 78 plasma and 51 tissue samples were tested. Guardant360 CDx identified 62 positive (16 negative), and ODxT identified 39 positive (3 negative), samples with EGFR ex20ins. Baseline demographic and clinical characteristics were similar between the CHRYSALIS-, Guardant360 CDx-, and ODxT-identified populations. Agreement with local PCR/next-generation sequencing tests used for enrollment into CHRYSALIS demonstrated high adjusted negative (99.6% and 99.9%) and positive (100% for both) predictive values with the Guardant360 CDx and ODxT tests, respectively. Overall response rates were comparable between the CHRYSALIS, Guardant360 CDx, and ODxT populations. Both the plasma- and tissue-based diagnostic tests provided accurate, comprehensive, and complementary approaches to identifying patients with EGFR ex20ins who could benefit from amivantamab therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Seleção de Pacientes , Mutagênese Insercional/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Éxons/genética , Mutação
11.
Nat Commun ; 13(1): 1490, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314699

RESUMO

Due to epistasis, the same mutation can have drastically different phenotypic consequences in different individuals. This phenomenon is pertinent to precision medicine as well as antimicrobial drug development, but its general characteristics are largely unknown. We approach this question by genome-wide assessment of gene essentiality polymorphism in 16 Saccharomyces cerevisiae strains using transposon insertional mutagenesis. Essentiality polymorphism is observed for 9.8% of genes, most of which have had repeated essentiality switches in evolution. Genes exhibiting essentiality polymorphism lean toward having intermediate numbers of genetic and protein interactions. Gene essentiality changes tend to occur concordantly among components of the same protein complex or metabolic pathway and among a group of over 100 mitochondrial proteins, revealing molecular machines or functional modules as units of gene essentiality variation. Most essential genes tolerate transposon insertions consistently among strains in one or more coding segments, delineating nonessential regions within essential genes.


Assuntos
Elementos de DNA Transponíveis , Saccharomyces cerevisiae , Elementos de DNA Transponíveis/genética , Genes Essenciais/genética , Humanos , Redes e Vias Metabólicas , Mutagênese/genética , Mutagênese Insercional/genética , Saccharomyces cerevisiae/genética
12.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051369

RESUMO

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Resistência Microbiana a Medicamentos/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Vida Livre de Germes , Inflamação/patologia , Intestinos/patologia , Masculino , Metaboloma/genética , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Mutação/genética , RNA Ribossômico 16S/genética , Transcrição Gênica
13.
Cells ; 11(2)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053321

RESUMO

The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.


Assuntos
Repetições de Microssatélites/genética , Doenças Neurodegenerativas/genética , Alelos , Elementos Alu/genética , Animais , Sequência de Bases , Humanos , Mutagênese Insercional/genética
14.
J Cancer Res Clin Oncol ; 148(1): 163-176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34698913

RESUMO

BACKGROUND: EGFR exon 20 insertion (EGFR ex20ins) mutations account for about 10-12% of all EGFR-mutated tumors, which are usually associated with primary drug resistance to conventional EGFR-TKI therapy and worse survival outcomes, and are currently a major problem for clinicians in clinical management. In recent years, with the rapid improvement of sequencing technology and careful review of clinical data, investigators have gained a deeper understanding and clearer cognition of the clinicopathological features and molecular mechanisms of these EGFR ex20ins mutations. PURPOSE: The aim of this study was to systemically review the molecular structure and clinical characteristics of EGFR ex20ins mutations, and focus on summarizing the latest data of emerging therapies (including novel small-molecule EGFR-TKI drugs, specific monoclonal antibodies, novel drugs targeting other mechanisms, and immunotherapy) for those patients. CONCLUSION: Advances in overcoming these systemic challenges have greatly accelerated the development of new drugs targeting EGFR ex20ins, and are committed to designing more rational combination therapies to overcome or delay the emergence of drug resistance, ultimately improve the prognosis of such uncommon mutant populations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/patologia , Estrutura Molecular , Mutagênese Insercional/genética
15.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944068

RESUMO

Epidermal growth factor receptor (EGFR) exon 20 insertion mutations account for a tenth of all EGFR mutations in lung cancers. An important unmet clinical need is the identification of EGFR exon 20 insertion mutants that can respond to multiple classes of approved EGFR-TKIs. We sought to characterize variants involving EGFR-D770 to EGFR-G770 position equivalence changes that structurally allow for response to irreversible 2nd generation EGFR-TKIs. Our group used preclinical models of EGFR exon 20 insertion mutations to probe representative 1st (erlotinib), 2nd (afatinib, dacomitinib), 3rd generation (osimertinib) and EGFR exon 20 insertion mutant-active (poziotinib, mobocertinib) TKIs; we also queried the available clinical literature plus our institutional database to enumerate clinical outcomes. EGFR-D770>GY and other EGFR insertions with a G770 equivalence were identified at a frequency of 3.96% in separate cohorts of EGFR exon 20 insertion mutated lung cancer (n = 429). Cells driven by EGFR-D770>GY were insensitive to erlotinib and osimertinib, displayed sensitivity to poziotinib and dacomitinib and were uniquely sensitive to afatinib and dacomitinib in comparison with other more typical EGFR exon 20 insertion mutations using proliferation and biochemical assays. Clinical cases with EGFR-G770 equivalence from the literature and our center mirrored the preclinical data, with radiographic responses and clinical benefits restricted to afatinib, dacomitinib, poziotinib and mobocertinib, but not to erlotinib or osimertinib. Although they are rare, at <4% of all exon 20 insertion mutations, EGFR-G770 equivalence exon 20 insertion mutations are sensitive to approved 2nd generation EGFR TKIs and EGFR exon 20 insertion mutant-active TKIs (mobocertinib and poziotinib). EGFR-D770>GY and other insertions with a G770 equivalence join EGFR-A763_Y764insFQEA as exon 20 insertion mutationsresponsive to approved EGFR TKIs beyond mobocertinib; this data should be considered for clinical care, genomic profiling reports and clinical trial elaboration.


Assuntos
Afatinib/farmacologia , Receptores ErbB/genética , Éxons/genética , Mutagênese Insercional/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Modelos Animais de Doenças , Receptores ErbB/química , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Estadiamento de Neoplasias
16.
Genes (Basel) ; 12(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946828

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system is a groundbreaking gene-editing tool, which has been widely adopted in biomedical research. However, the guide RNAs in CRISPR-Cas9 system may induce unwanted off-target activities and further affect the practical application of the technique. Most existing in silico prediction methods that focused on off-target activities possess limited predictive precision and remain to be improved. Hence, it is necessary to propose a new in silico prediction method to address this problem. In this work, a deep learning framework named R-CRISPR is presented, which devises an encoding scheme to encode gRNA-target sequences into binary matrices, a convolutional neural network as feature extractor, and a recurrent neural network to predict off-target activities with mismatch, insertion, or deletion. It is demonstrated that R-CRISPR surpasses six mainstream prediction methods with a significant improvement on mismatch-only datasets verified by GUIDE-seq. Compared with the state-of-art prediction methods, R-CRISPR also achieves competitive performance on datasets with mismatch, insertion, and deletion. Furthermore, experiments show that data concatenate could influence the quality of training data, and investigate the optimal combination of datasets.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Mutagênese Insercional/genética , Aprendizado Profundo , Deleção de Genes , Redes Neurais de Computação , RNA Guia de Cinetoplastídeos/genética
17.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34793701

RESUMO

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Assuntos
Deleção de Genes , Duplicação Gênica , Células Germinativas/metabolismo , Recombinação Genética/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Cromátides/metabolismo , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , DNA Circular/genética , Feminino , Genoma , Haplótipos/genética , Recombinação Homóloga/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutagênese Insercional/genética , Mutação/genética
18.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34783858

RESUMO

Chromatin profiling in single cells has been extremely challenging and almost exclusively limited to histone proteins. In cases where single-cell methods have shown promise, many require highly specialized equipment or cell type-specific protocols and are relatively low throughput. Here, we combine the advantages of tagmentation, linear amplification, and combinatorial indexing to produce a high-throughput single-cell DNA binding site mapping method that is simple, inexpensive, and capable of multiplexing several independent samples per experiment. Targeted insertion of promoters sequencing (TIP-seq) uses Tn5 fused to proteinA to insert a T7 RNA polymerase promoter adjacent to a chromatin protein of interest. Linear amplification of flanking DNA with T7 polymerase before sequencing library preparation provides ∼10-fold higher unique reads per single cell compared with other methods. We applied TIP-seq to map histone modifications, RNA polymerase II (RNAPII), and transcription factor CTCF binding sites in single human and mouse cells.


Assuntos
Epigenômica , Mutagênese Insercional/genética , Regiões Promotoras Genéticas/genética , Análise de Célula Única , Mapeamento Cromossômico , Células HCT116 , Humanos
19.
Genes (Basel) ; 12(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680886

RESUMO

Hemophilia B is an x-linked recessive hereditary coagulopathy that has been reported in various species. We describe a male Newfoundland-Parti Standard Poodle hybrid puppy and its family with hemophilia B from clinical manifestations to the molecular genetic defect. The index case presented for dyspnea was found to have a mediastinal hematoma, while surgical removal and transfusion support brought some relief, progressive hematoma formations led to humane euthanasia. Sequencing the F9 exons revealed a single nucleotide insertion resulting in a frameshift in the last exon (NM_001003323.2:c.821_822insA), predicted to result in a premature stop codon (NP_001003323.1:p.Asn274LysfsTer23) with a loss of 178 of 459 amino acids. The unexpected high residual plasma factor IX activity (3% to 11% of control) was likely erroneous, but no further studies were performed. Both the purebred Newfoundland dam and her sister were heterozygous for the insertion. Five additional male offspring developed severe hemorrhage and were hemizygous for the F9 variant and/or had a prolonged aPTT. In contrast, other male littermates had normal aPTTs and no evidence of bleeding. While they are related to a common Newfoundland granddam, the prevalence of the pathogenic variant in the Newfoundland breed is currently unknown. These clinical to molecular genetic studies illustrate that precision medicine is achievable in clinical companion animal practice.


Assuntos
Doenças do Cão/genética , Fator IX/genética , Predisposição Genética para Doença , Hemofilia B/genética , Animais , Doenças do Cão/patologia , Cães , Éxons/genética , Feminino , Genes Ligados ao Cromossomo X , Hemofilia B/patologia , Masculino , Mutagênese Insercional/genética , Linhagem
20.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208268

RESUMO

Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding ß-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A-gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.


Assuntos
Agrobacterium tumefaciens/metabolismo , Biotecnologia , Euglena gracilis/genética , Microalgas/genética , Técnicas de Transferência Nuclear , Transformação Genética , Agrobacterium tumefaciens/efeitos dos fármacos , Antibacterianos/farmacologia , Cinamatos/farmacologia , Células Clonais , DNA Bacteriano/genética , Euglena gracilis/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Microalgas/efeitos dos fármacos , Mutagênese Insercional/genética , Transformação Genética/efeitos dos fármacos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...